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Abstract Using the boundary-element method which is a combination of a fictitious load and a displacement
discontinuity, numerical solutions are obtained for two-dimensional (plane deformation) boundary-value problems
for the elastic equilibrium of infinite and finite homogeneous isotropic bodies having elliptic holes with cracks and
cuts of finite length. Using the method of separation of variables, the boundary-value problem is solved in the case
of an infinite domain containing an elliptic hole with a linear cut on whose contour the symmetry conditions are
fulfilled.
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1 Introduction

In the literature on cracks emanating from the surfaces of elliptic holes the values of critical loads causing the
development of cracks are calculated. In [1–3], problems of ultimate equilibrium are solved in closed form for a
brittle plate weakened by an elliptic hole with one or two small linear cracks located at the ends of the hole. In [4]
stress intensity factors are considered for cracks emanating from elliptic holes in finite or infinite plates.

The present paper and the author’s earlier work [5] deal with the question whether cracks can be helpful in
strengthening structures. For example, when building underground structures, tunnels in particular, engineers inten-
tionally make so-called technical openings in the tunnel walls in order to decrease the stress concentration and
fortify the walls using various techniques.

In [5] we investigated how the number of cracks and their lengths influence the stress distribution in the tunnel
walls, i.e., how the tangential stress concentration on the circular hole contour can be diminished by varying the
number of cracks and their lengths.

In this paper we are concerned with the question how the tangential stress concentration can be diminished on
the contour of an elliptic hole (except the crack ends) by varying the number of cracks and their lengths. Although
the stress intensity factor near cracks is important, we do not consider it here since that will be the subject of a
separate study.
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112 N. Zirakashvili

Fig. 1 The geometry and loading for the cases with (a) one crack, (b) two cracks, (c) four cracks, and (d) an elliptic ring with cut AB

In Sect. 2, using the boundary-element method (BEM) [6, Chaps. 4, 5], we solve the two-dimensional (plane-
deformation) problem concerning the elastic equilibrium of an infinite homogeneous isotropic body having an
elliptic hole with cracks of equal length L (Fig. 1, cases a, b, c). It is assumed that the body is free from internal
stresses and that the biaxial tensile force is given at infinity. We obtain numerical results and present graphs for the
cases with one, two and four cracks.

In Sect. 3, the elastic equilibrium of a finite body that occupies the domain �1 = {θ1 < θ < θ2, 0 < α < π} (or
�2 = {θ1 < θ < θ2, −π

2 < α < π
2 }) is defined in the elliptic coordinates θ, α. It is assumed that nonzero stresses are

given for θ = θ1, and zero stresses for θ = θ2. The conditions of symmetry (v = 0, σαα = 0 ⇔ v = 0, ∂u
∂α

= 0) and
antisymmetry (u = 0, σαα = 0 ⇔ u = 0, ∂v

∂α
= 0) [7] are given for α = 0 and α = π (or for α = π

2 and α = −π
2 ) ,

respectively. We easily observe that this problem coincides with the boundary-value problem concerning the elastic
equilibrium of an elliptic ring with a cut on whose contours the symmetry conditions are fulfilled (Fig. 1, cases d, e).
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The numerical solution of boundary-value problems 113

2 Solution of the boundary-value problem for an infinite domain with an elliptic hole and cracks
by the BEM

We write the equilibrium equations in terms of displacements as follows [8]:

grad
[
(λ + 2µ) div

−→
U

]
− µ rot rot

−→
U = 0, div(µ rot

−→
U ) = 0.

or

grad D − rot
−→
K = 0, div

−→
K = 0, div

−→
U = 1

λ + 2µ
D, rot

−→
U = 1

µ

−→
K, (1)

where λ = λ(θ, α, ζ ), µ = const > 0 are classical elastic characteristics,
−→
U = −→

U (u, v, w) is the displacement
vector;

−→
K (Kθ , Kα, Kζ ); θ, α, ζ are the curvilinear coordinates.

Since here we deal with plane deformation, solutions of boundary-value problems are sought in the following
form: u = u(θ, α), v = v(θ, α), w = 0 in the domain bounded by the curves of an elliptic coordinate system θ , α

(0 ≤ θ < ∞, 0 ≤ α < 2π [9, pp. 102–107]

x2

c2 cosh2 θ0
+ y2

c2 sinh2 θ0
= 1, θ0 = const �= 0,

x2

c2 cos2 α0
− y2

c2 sin2 α0
= 1, α0 = const �= 0,

π

2
, π,

3

2
π,

where x, y are Cartesian coordinates, x = c cosh θ cos α, y = c sinh θ sin α and c is a scale coefficient.
Projecting equalities (1) onto the tangential lines of the curves of the elliptic coordinate system, we obtain the

following system of equilibrium equations:
∂ D

∂θ
− ∂ B

∂α
= 0,

∂u

∂θ
+ ∂v

∂α
= æ − 1

æµ
h2

0 D,

∂ D

∂α
+ ∂ B

∂θ
= 0,

∂v

∂θ
− ∂u

∂α
= 1

µ
h2

0 B,

(2)

where u = 2hu
c2 , v = 2hv

c2 , B = Kζ , h0 = √
cosh(2θ) − cos(2α), æ = 4(1 − ν), µ = E

2(1−ν)
; ν, E are

known constants; u, v are the components of the displacement vector in the system of elliptic coordinates θ , α;
hθ = hα = h = c√

2

√
cosh(2θ) − cos(2α) are the Lamé constants, c = 1 is a scale coefficient; æ−1

æµ
h2

0 D is the

divergence of the displacement vector, 1
µ

h2
0 B is displacement-vector rotor.

Now let us formulate the following boundary-value problem: in an infinite domain � = {θ1 < θ < ∞, 0 <

α < 2π} having an elliptic hole θ = θ1 with cracks of equal length L , find a solution of the system of equilibrium
equations (2) with respect to the unknowns D, B, u, v using the boundary conditions

when θ = θ1: σθθ = 0, σθα = 0, (3)

when θ → ∞: σθθ = p, σθα = 0, (4)

when α = 0, 2π: σαα = 0, σθα = 0, (5)

where θ1 < θ < θ1 + L , and σαα ,σθθ , σθα are the stress-tensor components in the system of elliptic coordinates.
For the numerical solution of the problem we use a method based on a combination of a fictitious load

[6, Chap. 4] and a displacement discontinuity [6, Chap. 5], [10]. This boundary-value problem is a generaliza-
tion of that for an infinite body with a circular hole and radial cracks [5].

To solve the external problem with given nonzero stresses at infinity, the boundary conditions must be formulated
in terms of additional stresses [6, p. 73]. When doing so, we obtain the boundary conditions (3), (4) and (5) in the
form

when θ = θ1: σθθ = −p, σθα = 0, (6)

when α = 0, 2π: σαα = −p, σθα = 0 (7)

for θ1 < θ < θ1 + L .
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114 N. Zirakashvili

If the boundary is divided into N segments (elements) of small length, then it can be assumed that constant
normal σ i

θθ = −p (or σ i
αα = −p) and tangential σ i

θα = 0 stresses act on each i-th element over its entire length.
Then the boundary conditions (6), (7) take the form

when θ = θ1: σ i
θθ = −p, σ i

θα = 0, (8)

when α = 0, 2π: σ i
αα = −p, σ i

θα = 0 (9)

where again θ1 < θ < θ1 + L .
For each boundary element we choose concentrated forces uniformly distributed throughout its length. For exam-

ple, for the j-th element we assume a continuous distribution of tangential P j
s and normal P j

n stresses. Also, for the
j-th element we have fictitious stresses P j

s and P j
n and also real stresses σ

j
s and σ

j
n induced by the stresses applied

to all boundary elements.
Using the solution of Kelvin’s problem for plane deformation [11, pp. 336–339] and the coordinate-transforma-

tion formulas [12, pp. 23–26] (in order to take into account the orientation segments), we can calculate the real
stresses σ i

s and σ i
n at the midpoints of all the segments, i = 1, . . . , N1. Thus we obtain the formulas

σ i
s ≡ σ i

θα =
N1∑
j=1

(
Ai j

ss P j
s + Ai j

sn P j
n

)
, σ i

n ≡ σ i
θθ =

N1∑
j=1

(
Ai j

ns P j
s + Ai j

nn P j
n

)
, (10)

where Ai j
ss , Ai j

sn , Ai j
ns , Ai j

nn are the boundary coefficients for the influence of stresses for the problem under consid-
eration. For example, the coefficient Ai j

ns gives the real normal stress at the center of the i-th segment (σ i
n) induced

by the constant unit tangential load (P j
s = 1) applied to the j-th segment.

Let us now consider the part of the domain which contains a crack having two contours. The fictitious-load
method is not applicable for the solution of crack problems because the influence of elements of one contour cannot
be distinguished from the influence of elements of the other contour. To solve problems of this kind we use another
BEM which is called the displacement discontinuity method [6, Chap. 5]. The method is based on the analytic
solution of the problem of an infinite plane where displacements undergo a constant discontinuity within the limits
of a finite segment. The analytic solution of that problem was obtained by S.L Crouch [10].

If the crack is divided into N2 segments (elements) of small length, then it can be assumed that the displacement
discontinuity is constant throughout the lengths of each element. The influence of an individual elementary dis-
placement discontinuity on displacements and stresses at an arbitrary point of an infinite rigid body can be defined
by means of Crouch’s analytic solution. For example, tangential and normal stresses at the i-th element center can
be expressed in terms of displacement discontinuity components of the j-th element.

If we put an elementary displacement discontinuity on each of the segments along the crack, we obtain

σ i
s ≡ σ i

θα =
N∑

j=N1+1

(
Ci j

ss D j
s + Ci j

sn D j
n

)
, σ i

n ≡ σ i
αα =

N∑
j=N1+1

(
Ci j

ns D j
s + Ci j

nn D j
n

)
,

i = N1 + 1, . . . , N = N1 + N2,

(11)

where Ci j
ss , Ci j

sn , Ci j
ns , Cnn are the boundary coefficients of stress influence. For example, the coefficient Ci j

ns gives the
normal stress (σ i

n) at the center of the i-th element, which is induced by the constant unit displacement discontinuity

directed tangentially along the j-th element (D j
s = 1).

For the boundary conditions to be satisfied on θ = θ1, we use formulas (10) obtained by the fictitious-load
method, while for cracks we use formulas (11) obtained by the displacement discontinuity method. Thus we come
to the following system of 2N linear equations with 2N unknowns (N = N1 + N2)
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The numerical solution of boundary-value problems 115

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1∑
j=1

(
Ai j

ss P j
s + Ai j

sn P j
n

)

+
N∑

j=N1+1

(
Ci j

ss D j
s + Ci j

sn D j
n

)
= 0,

N1∑
j=1

(
Ai j

ns P j
s + Ai j

nn P j
n

)

+
N∑

j=N1+1

(
Ci j

ns D j
s + Ci j

nn D j
n

)
= −p,

i = 1, . . . , N .

(12)

The stresses P j
s and P j

n in these equations are fictitious values. We have introduced them as auxiliary unknowns
and they have no physical meaning. However, linear combinations of fictitious loads (10) give us real tangential
and normal stresses which are used to satisfy the boundary conditions, while the unknowns D j

s and D j
n represent

discontinuous displacements.
After solving system (12) by any numerical method (here we have used the Gauss method), we can calculate the

displacements and stresses at any point of the body except the points lying inside a circle with center in the middle
of a boundary element and having a radius equal to the lengths of this element, certainly not counting the midpoint
of the element [6, p. 79].

Using the MATLAB software we obtained numerical results and constructed graphs for the boundary-value
problem (2), (3), (4), (5) (or (2), (8), (9)) for ν = 0.3, E = 7 × 104 (N/m2), N1 = 360, N2 = 20, p = 10 (N/m2),
θ1 = 1 (m). In particular, we obtained numerical results for three cracks of lengths L = 0.1, 0.5 and 0.8 m.

In Fig. 2 we see the values of σαα for θ = θ1, 0 < α < 2π and one crack along α = 0 of lengths L = 0.1, 0.5
and 0.8. Figure 3 shows the values of σαα for θ = θ1, 0 < α < 2π and two cracks along α = 0 and α = π of
lengths L = 0.1, 0.5 and 0.8. Figure 4 presents the values of σαα for θ = θ1, 0 < α < 2π and four cracks along
α = 0, α = π

2 , α = π and α = 3
2π of lengths L = 0.1, 0.5 and 0.8.

The above graphs enable us to draw the following conclusions. As the number of cracks and their lengths grow,
the concentration of stresses σαα , strange as it might seem, decreases. Knowing this fact, engineers sometimes
make so-called technical crevices in order to strengthen underground structures. Concerning the ends of the cracks,
engineers have different methods of reducing the concentration of the stresses in this points.

Fig. 2 σαα on the boundary of an elliptic hole with one crack Fig. 3 σαα on the boundary of an elliptic hole with two cracks

123



116 N. Zirakashvili

Fig. 4 σαα on the boundary
of an elliptic hole with four
cracks

In the next section we will define boundary-value problems of elastic equilibrium for an elliptic ring with a
cut.

3 Solution of boundary-value problems for an elliptic ring with a cut by the BEM

Below we consider two boundary-value problems for an elliptic ring with a cut along α = 0 (Problem 1) in one
case, and along α = π

2 (Problem 2) in the other.

Problem 1 We formulate the problem as follows: in the domain �1 = {θ1 < θ < θ2, 0 < α < π} (Fig. 5a), find
the solution of the system of equilibrium equations (2) with the following boundary conditions:

(a) when θ = θ1: σθθ = p cos
α

2
, σθα = 0,

(b) when θ = θ2 : σθθ = 0, σθα = 0, (13)

(c) when α = 0 : v = 0, σθα = 0,

(d) when α = π: u = 0, σαα = 0.

This problem coincides with the boundary-value problem for the elastic equilibrium of an elliptic ring with a cut
(Fig. 1d) on whose contours the symmetry conditions (13c) are fulfilled.

Problem 2 In the domain �2 = {θ1 < θ < θ2, −π
2 < α < π

2 } (Fig. 5b), find a solution of the system of
equilibrium equations (2) with the following boundary conditions:

(a) when θ = θ1: σθθ = p cos

[
1

2

(
α − π

2

)]
, σθα = 0,

(b) when θ = θ2: σθθ = 0, σθα = 0, (14)

(c) when α = −π

2
: u = 0, σαα = 0,

(d) when α = π

2
: v = 0, σθα = 0.

This problem coincides with the boundary-value problem describing the elastic equilibrium of an elliptic ring with
a cut (Fig. 1e) on whose contours the symmetry conditions (14d) are fulfilled.

The above-formulated problems (2), (13) and (2), (14) are solved by the boundary-element method. At the char-
acteristic points of the domain we calculate the stress values for ν = 0.3, E = 7 × 104 (N/m2), θ1 = 0.01 and
1 (m), θ2 = 100 (m), p = 10 (N/m2). The semi-ellipses θ = θ1 and θ = θ2 are divided into 180 equal arcs, and the
linear parts of the boundary are divided into 40 equal segments.
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The numerical solution of boundary-value problems 117

Fig. 5 Semi-elliptic rings

In the next section we will solve the problems analytically for an infinite domain with an elliptic hole and compare
the results with the numerical solution obtained for θ2 � θ1.

4 Solution of the boundary-value problems for an infinite domain with an elliptic hole and a crack
by the method of separation of variables (MSV)

The MSV yields an analytical (exact) solution of the boundary-value problems (2), (13) and (2), (14) for θ2 → ∞
(Fig. 5, cases a, b). The solution is constructed using its general representation by two harmonic functions ϕ1, ϕ2.
The components of the displacement vector have the form

u = −
(

sinh2 θ1 coth θ
∂2ϕ1

∂θ∂α
+ æ − 1

2

∂ϕ1

∂α
− ∂ϕ2

∂θ

)
sinh θ cos α

−
(

cosh2 θ1 tanh θ
∂2ϕ1

∂α2 + æ − 1

2

∂ϕ1

∂θ
− ∂ϕ2

∂α

)
cosh θ sin α,

v =
(

cosh2 θ1 tanh θ
∂2ϕ1

∂θ∂α
+ æ − 1

2

∂ϕ1

∂α
− ∂ϕ2

∂θ

)
sinh θ cos α

−
(

sinh2 θ1 coth θ
∂2ϕ1

∂α2 + æ − 1

2

∂ϕ1

∂θ
− ∂ϕ2

∂α

)
cosh θ sin α,

and the stress-tensor components are written as

h2

µ
σθθ =

(
2 sinh2 θ1 coth θ

∂3ϕ1

∂α3 − ∂2ϕ1

∂θ∂α
− 2

∂2ϕ2

∂α2

)
sinh θ cos α

−
(

2 cosh2 θ1 tanh θ
∂3ϕ1

∂θ∂α2 − ∂2ϕ1

∂α2 − 2
∂2ϕ2

∂θ∂α

)
cosh θ sin α

−2 [cosh(2θ1) − cosh(2θ)]

cosh(2θ) − cos(2α)

(
∂2ϕ1

∂α2 cosh θ sin α − ∂2ϕ1

∂θ∂α
sinh θ cos α

)
,
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118 N. Zirakashvili

h2

µ
σαα =

(
2 cosh2 θ1 tanh θ

∂3ϕ1

∂θ∂α2 + 3
∂2ϕ1

∂α2 − 2
∂2ϕ2

∂θ∂α

)
cosh θ sin α

−
(

2 sinh2 θ1 coth θ
∂3ϕ1

∂α3 + 3
∂2ϕ1

∂θ∂α
− 2

∂2ϕ2

∂α2

)
sinh θ cos α

+2 [cosh(2θ1) − cosh(2θ)]

cosh(2θ) − cos(2α)

(
∂2ϕ1

∂α2 cosh θ sin α − ∂2ϕ1

∂θ∂α
sinh θ cos α

)
,

h2

µ
σθα = −

(
2 cosh2 θ1 tanh θ

∂3ϕ1

∂α3 − ∂2ϕ1

∂θ∂α
− 2

∂2ϕ2

∂α2

)
cosh θ sin α

−
(

2 sinh2 θ1 coth θ
∂3ϕ1

∂θ∂α2 − ∂2ϕ1

∂α2 − 2
∂2ϕ2

∂θ∂α

)
sinh θ cos α

+2 [cosh(2θ1) − cosh(2θ)]

cosh(2θ) − cos(2α)

(
∂2ϕ1

∂α2 sinh θ cos α + ∂2ϕ1

∂θ∂α
cosh θ sin α

)
.

The boundary conditions (13c, d) are satisfied if

ϕ1 =
2∑

j=1

A1 j e
−k(θ−θ1) sin(kα), ϕ2 =

2∑
j=1

A2 j e
−k(θ−θ1) cos(kα), k = 2 j − 1

2
. (15)

The constants Ai j (i, j = 1, 2) are defined if the boundary conditions (13a, b) are satisfied.
Let us now consider the process of obtaining the values of the coefficients Ai j . We rewrite (13a) in the equivalent

form

− sinh(2θ1)

(
∂2ϕ1

∂θ∂α

)

θ=θ1

+
(

∂ϕ1

∂α

)

θ=θ1

+ 2

(
∂ϕ2

∂θ

)

θ=θ1

= G1(α),

− sinh(2θ1)

(
∂2ϕ1

∂α2

)

θ=θ1

+
(

∂ϕ1

∂θ

)

θ=θ1

+ 2

(
∂ϕ2

∂α

)

θ=θ1

= −G2(α),

(16)

where

G1(α) =
∫

(cosh θ1 sin ασθθ + sinh θ1 cos ασθα) dα

= − p

3
cosh θ1 cos

(
3

2
α

)
− p cosh θ1 cos

(α

2

)
+ C

p

2
cosh θ1,

G2(α) =
∫

(sinh θ1 cos ασθθ − cosh θ1 sin ασθα) dα

= p

3
sinh θ1 sin

(
3

2
α

)
+ p sinh θ1 sin

(α

2

)
+ C

p

2
sinh θ1,

where C is integration constant. We substitute (15) in (16) and compare the coefficients of the same trigonometric
functions in the resulting equalities. Thus we obtain the following system of linear algebraic equations:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
1

2
sinh(2θ1) + 1

]
A11 − A21 = −p cosh θ1,

1

2

[
1

2
sinh(2θ1) − 1

]
A11 − A21 = −p sinh θ1,

3

2

[
3

2
sinh(2θ1) + 1

]
A12 − 3A22 = − p

3
cosh θ1,

3

2

[
3

2
sinh(2θ1) − 1

]
A12 − 3A22 = − p

3
sinh θ1.

from which we have

A11 = −pe−θ1 , A12 = − p

9
e−θ1 , A21 = p

8

(
3eθ1 + e−3θ1

)
, A22 = p

72

(
eθ1 + 3e−3θ1

)
.
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The boundary conditions (14c, d) are satisfied if

ϕ1 =
2∑

j=1

C1 j e
−k(θ−θ1) sin

[
k

(
α + π

2

)]
,

ϕ2 =
2∑

j=1

C2 j e
−k(θ−θ1) cos

[
k

(
α + π

2

)]
, k = 2 j − 1

2
.

The coefficients Ci j (i, j = 1, 2) are defined in the same way as the coefficients Ai j in the preceding case:

C11 = −pe−θ1 , C12 = p

9
e−θ1 , C21 = p

8

(
3eθ1 + e−3θ1

)
, C22 = − p

72

(
eθ1 + 3e−3θ1

)
.

It is important to note that the solution found in the domain �1 (or �2) can be continuously extended across the
boundary α = π (or α = −π

2 ) . As a result, we obtain the domain �3 = {θ1 < θ < θ2 → ∞, 0 < α < 2π}(
or �4 = {

θ1 < θ < θ2 → ∞, − 3π
2 < α < π

2

})
with a cut. On the cut contours α = 0 and α = 2π

(
or α = − 3π

2
and α = π

2

)
the conditions v = 0, σθα = 0 are fulfilled. Therefore we have obtained an approximate and an exact

solution in the annular domain with a cut on whose contours the symmetry conditions are fulfilled.
A comparison of the results obtained by the boundary-element method with those of the exact solution shows an

excellent agreement (see Figs. 6–11). We can therefore conclude that the application of the BEM has proved to be
highly feasible for solving the boundary-value problems considered in this paper.

By solving the problems corresponding to Figs. 6–11 we obtain an idea of the distribution of the internal stresses
throughout the body. In particular, using the BEM and the MSV we have calculated the distribution of the stresses
σαα, σθα, σθθ along the line AB (Fig. 5, cases a, b) when α = π

3 . As seen from Figs. 6 and 9, the concentration
of σαα takes place on the contour θ = θ1, while for θ → ∞, we have σαα → 0, as should have been expected.
Figures 7 and 10 show the tangential stress σθα whose value on the contour is equal to zero (i.e., the boundary con-
dition is fulfilled). Near the contour within the body, σθα has a high value but as it moves away from the boundary,
σθα gradually tends to zero, σθα →

θ→∞ 0 (the boundary condition is also fulfilled). Figures 8 and 11 show the normal

stress σθθ , which on the hole contour has a value equal to that resulting from the corresponding boundary condition.
Further it decreases monotonically and gradually vanishes as required by the condition at infinity.

Fig. 6 The values of σαα for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = 0, where (a) θ1 = 0.01, c1 = 0.01, c2 = 10 and

(b) θ1 = 1, c1 = 1, c2 = 10
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120 N. Zirakashvili

Fig. 7 The values of σθα for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = 0, where (a) θ1 = 0.01, c1 = 0.01, c2 = 10 and

(b) θ1 = 1, c1 = 1, c2 = 10

Fig. 8 The values of σθθ for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = 0, where (a) θ1 = 0.01, c1 = 0.01, c2 = 10 and

(b) θ1 = 1, c1 = 1, c2 = 10

Table 1 contains both the approximate values (obtained by the BEM) and the exact values (obtained by the MSV)
of solutions of Problem 1 for the stresses σθθ , σαα and σθα at some points from α = π

3 , 1 ≤ θ < 10, when the cut
lies along α = 0.

Table 2 contains the approximate values (obtained by the BEM) and the exact values (obtained by the MSV) of
solutions of Problem 2 for the stresses σθθ , σαα and σθα at some points from α = π

3 , 0.1 ≤ θ < 5, when the cut
lies along α = π

2 .
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Fig. 9 The values of σαα for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = π

2 , where (a) θ1 = 0.01, c1 = 0.01, c2 = 5 and
(b) θ1 = 1, c1 = 1, c2 = 5

Fig. 10 The values of σθα for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = π

2 , where (a) θ1 = 0.01, c1 = 0.01, c2 = 5 and
(b) θ1 = 1, c1 = 1, c2 = 5

5 Conclusions

The main results of this work can be formulated as follows:

1. The equilibrium equations (2) are written in terms of elliptic coordinates.
2. The solution of the equilibrium equation (2) is obtained by the method of separation of variables. The solution

is constructed using its general representation by two harmonic functions.
3. Analytic (exact) solutions are obtained for two-dimensional boundary-value problems for the elastic

equilibrium of infinite homogeneous isotropic bodies with elliptic holes and a cut on whose boundaries the
symmetry conditions are fulfilled.
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Fig. 11 The values of σθθ for α = π
3 and c1 ≤ θ < c2 in the case of a cut along α = π

2 , where (a) θ1 = 0.01, c1 = 0.01, c2 = 5 and
(b) θ1 = 1, c1 = 1, c2 = 5

Table 1 Stresses at some points from α = π
3 , 1 ≤ θ < 10, when the cut lies along α = 0

θ σθθ Exact σαα Exact σθα Exact
Approxim. Approxim. Approxim.

1.00 8.6961 8.6603 −5.4552 −5.4662 −1.0000×10−10 0.0000

1.90 1.8268 1.8188 −1.3588 −1.3561 −6.5238×10−1 −6.5441×10−1

2.80 3.7391×10−1 3.7091×10−1 −2.8760×10−1 −2.8980×10−1 −2.1615×10−1 −2.1535×10−1

3.70 8.4566×10−2 8.4385×10−2 −6.5901×10−2 −6.7401×10−2 −5.9146×10−2 −5.9486×10−2

4.60 2.0907×10−2 2.0609×10−2 −1.6110×10−2 −1.6630×10−2 −1.5251×10−2 −1.5761×10−2

5.50 5.2986×10−3 5.2086×10−3 −4.1817×10−3 −4.2217×10−3 −4.0298×10−3 −4.1198×10−3

6.40 1.4161×10−3 1.3361×10−3 −1.0550×10−3 −1.0850×10−3 −1.0325×10−3 −1.0715×10−3

7.30 2.4468×10−4 3.4488×10−4 −3.7926×10−4 −2.8026×10−4 −2.8815×10−4 −2.7815×10−4

8.20 9.5249×10−5 8.9249×10−5 −7.2050×10−5 −7.2550×10−5 −3.2135×10−5 −7.2145×10−5

9.55 1.1860×10−5 1.1770×10−5 −9.3651×10−6 −9.5691×10−6 −7.5273×10−6 −9.5253×10−6

Table 2 Stresses at some points from α = π
3 , 0.1 ≤ θ < 5, when the cut lies along α = π

2

θ σθθ Exact σαα Exact σθα Exact
Approxim. Approxim. Approxim.

1.0000×10−2 9.6689 9.6593 9.4010 9.4039 −1.3345×10−10 −2.3115×10−10

5.0900×10−1 8.2719 8.2709 6.5322×10−1 6.5342×10−1 −1.0043 −1.0067
1.0080 4.7699 4.7694 −9.8486×10−1 −9.8500×10−1 −1.0201 −1.0241
1.5070 2.2997 2.2961 −6.4044×10−1 −6.4076×10−1 −5.4406×10−1 −5.4433×10−1

2.0060 1.0596 1.0584 −3.0805×10−1 −3.0812×10−1 −2.4080×10−1 −2.4083×10−1

2.5050 4.8859×10−1 4.8659×10−1 −1.3395×10−1 −1.3976×10−1 −1.0233×10−1 −1.0291×10−1

3.0040 2.8318×10−1 2.2518×10−1 −6.3140×10−2 −6.3210×10−2 −4.4517×10−2 −4.4520×10−2

3.5030 1.0356×10−1 1.0493×10−1 −2.8767×10−2 −2.8877×10−2 −1.9123×10−2 −1.9708×10−2

4.0020 4.9189×10−2 4.9153×10−2 −1.3255×10−2 −1.3335×10−2 −8.8173×10−3 −8.9093×10−3

4.7505 1.5833×10−2 1.5860×10−2 −4.2462×10−3 −4.2470×10−3 −2.7549×10−3 −2.7849×10−3
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4. Numerical solutions are obtained by the boundary-element method for two-dimensional boundary-value prob-
lems for the elastic equilibrium of infinite and finite homogeneous isotropic bodies with elliptic holes having
cuts or cracks of finite length.

5. The question is investigated as to how the tangential stress concentration on the elliptic hole contour (except the
crack ends) can be diminished by varying the number of cracks and their lengths.

The results shown in Figs. 2–4 lead to the following conclusions.
Strange as it might seem, an increase in the number of cracks and their lengths brings about a decrease of the

stress concentration σαα on the hole contour, except at the crack ends. Being aware of this fact, engineers create
so-called technical cracks in order to fortify the tunnel structure. As for the crack ends, they apply various techniques
to lower the stress concentration at these points.

The aim of the problems corresponding to Figs. 6–11 is to obtain a picture of stress distribution inside the body.
In particular, the distributions of stresses σαα, σθα, σθθ are calculated along the line AB (Fig. 5) for α = π

3 .
In Figs. 6–11 and Tables 1, 2 the calculated stress values are given for the points lying along α = π

3 only for the
sake of simplicity. Absolutely in the same manner we can define values for other points of the rings, provided they
will not lie “too near” the boundary.

A comparison of the results obtained by the boundary-element method with those of the exact solution shows
good agreement. Therefore, we may conclude that the application of the BEM has proved to be effective for the
solution of the boundary-value problems considered in this paper, as well as of other problems involving a circular
ring.

In conclusion, it should be said that we have obtained solutions of crack problems analogous to the ones con-
sidered here in the case of circular holes in elastic media consisting of binary mixtures. However, this will be the
subject of a forthcoming paper.

References

1. Kaminskii AA, Sailov NS (1975) Spreading of cracks from the contours of elliptic opening in brittle plates under biaxial tensile
stresses. Int Appl Mech 11(2):167–173

2. Kaminskii AA, Sailov NS (1977) Effect of the heat flux on brittle fracture near an elliptic opening. Int Appl Mech 13(4):417–420
3. Kaminskii AA, Sailov NS (1978) Constructing the diagram of limiting stresses for a brittle body weakened by an elliptic opening

with cracks at the boundary. Mater Sci 14(1):83–85
4. Xiangqiao Y (2006) A numerical analysis of cracks emanating from an elliptic hole in a 2D elasticity plate. Eur J Mech-A/Solids

25(1):142–153
5. Zirakashvili N (2006) Application of the boundary element method to the solution of the problem of distribution of stresses in an

elastic body with a circular hole whose interior surface contains radial cracks. Proc A.Razmadze Math Inst 141:139–147
6. Crouch SL, Starfield AM (1983) Boundary element methods in solid mechanics. George Allen & Unwin, London
7. Khomasuridze N (1998) Thermoelastic equilibrium of bodies in generalized cylindrical coordinates. Georgian Math J 5(6):521–544
8. Kupradze VD, Gegelia TG, Basheleishvili MO, Burchuladze TV (1979) Three-dimensional problems of the mathematical theory

of elasticity and thermoelasticity. (Translated from Russian) North-Holand Series in Applied Mathematics and Mechanics, vol 25,
North-Holand Publ. Corp., Amsterdam-New York-Oxford; Russian original, Nauka, Moscow, 1976

9. Bermant AF (1958) Mapping linear coordinates. Transformation. Green’s Formulas, Russian Fizmatgiz, Moscow
10. Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. Int J Numer Methods Eng

10:301–343
11. Sokolnikoff IS (1956) Mathematical theory of elasticity 2nd edn. McGraw-Hill, New York
12. Muskhelishvili NI (1958) Some basic problems of the mathematical theory of elasticity. Noordhoff, Gröningen

123


	Abstract
	Abstract
	1 Introduction
	2 Solution of the boundary-value problem for an infinite domain with an elliptic hole and cracksby the BEM 
	3 Solution of boundary-value problems for an elliptic ring with a cut by the BEM 
	4 Solution of the boundary-value problems for an infinite domain with an elliptic hole and a crackby the method of separation of variables (MSV)
	5 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


